Ideal model thermodynamics (isometric)

class Ideal(number_of_links, link_length, hinge_mass)

The ideal chain model thermodynamics in the isometric ensemble.

The number of links in the chain.

The length of each link in the chain in units of nm.

hinge_mass

The mass of each hinge in the chain in units of kg/mol.

force(end_to_end_length, temperature)

The expected force as a function of the applied end-to-end length and temperature,

\[f(\xi, T) = \frac{\partial\psi}{\partial\xi} = \frac{3kT\xi}{N_b\ell_b^2}.\]
Parameters:
  • end_to_end_length (numpy.ndarray) – The end-to-end length \(\xi\).

  • temperature (float) – The temperature \(T\).

Returns:

The force \(f\).

Return type:

numpy.ndarray

nondimensional_force(nondimensional_end_to_end_length_per_link)

The expected nondimensional force as a function of the applied nondimensional end-to-end length per link,

\[\eta(\gamma) = \frac{\partial\vartheta}{\partial\gamma} = 3\gamma.\]
Parameters:

nondimensional_end_to_end_length_per_link (numpy.ndarray) – The nondimensional end-to-end length per link \(\gamma\equiv \xi/N_b\ell_b\).

Returns:

The nondimensional force \(\eta\equiv\beta f\ell_b\).

Return type:

numpy.ndarray

helmholtz_free_energy(end_to_end_length, temperature)

The Helmholtz free energy as a function of the applied end-to-end length and temperature,

\[\psi(\xi, T) = -kT\ln Q(\xi, T).\]
Parameters:
  • end_to_end_length (numpy.ndarray) – The end-to-end length \(\xi\).

  • temperature (float) – The temperature \(T\).

Returns:

The Helmholtz free energy \(\psi\).

Return type:

numpy.ndarray

The Helmholtz free energy per link as a function of the applied end-to-end length and temperature.

Parameters:
  • end_to_end_length (numpy.ndarray) – The end-to-end length \(\xi\).

  • temperature (float) – The temperature \(T\).

Returns:

The Helmholtz free energy per link \(\psi/N_b\).

Return type:

numpy.ndarray

relative_helmholtz_free_energy(end_to_end_length, temperature)

The relative Helmholtz free energy as a function of the applied end-to-end length and temperature,

\[\Delta\psi(\xi, T) = kT\ln\left[\frac{P_\mathrm{eq}(0)}{P_\mathrm{eq}(\xi)}\right] = \frac{3kT\xi^2}{2N_b\ell_b^2}.\]
Parameters:
  • end_to_end_length (numpy.ndarray) – The end-to-end length \(\xi\).

  • temperature (float) – The temperature \(T\).

Returns:

The relative Helmholtz free energy \(\Delta\psi\equiv\psi(\xi,T)-\psi(0,T)\).

Return type:

numpy.ndarray

The relative Helmholtz free energy per link as a function of the applied end-to-end length and temperature.

Parameters:
  • end_to_end_length (numpy.ndarray) – The end-to-end length \(\xi\).

  • temperature (float) – The temperature \(T\).

Returns:

The relative Helmholtz free energy per link \(\Delta\psi/N_b\).

Return type:

numpy.ndarray

nondimensional_helmholtz_free_energy(nondimensional_end_to_end_length_per_link, temperature)

The nondimensional Helmholtz free energy as a function of the applied nondimensional end-to-end length per link and temperature.

Parameters:
  • nondimensional_end_to_end_length_per_link (numpy.ndarray) – The nondimensional end-to-end length per link \(\gamma\equiv \xi/N_b\ell_b\).

  • temperature (float) – The temperature \(T\).

Returns:

The nondimensional Helmholtz free energy \(\beta\psi=N_b\vartheta\).

Return type:

numpy.ndarray

The nondimensional Helmholtz free energy per link as a function of the applied nondimensional end-to-end length per link and temperature.

Parameters:
  • nondimensional_end_to_end_length_per_link (numpy.ndarray) – The nondimensional end-to-end length per link \(\gamma\equiv \xi/N_b\ell_b\).

  • temperature (float) – The temperature \(T\).

Returns:

The nondimensional Helmholtz free energy per link \(\vartheta\equiv\beta\psi/N_b\).

Return type:

numpy.ndarray

nondimensional_relative_helmholtz_free_energy(nondimensional_end_to_end_length_per_link)

The nondimensional relative Helmholtz free energy as a function of the applied nondimensional end-to-end length per link,

\[\beta\Delta\psi(\gamma) = \ln\left[\frac{\mathscr{P}_\mathrm{eq}(0)}{\mathscr{P}_\mathrm{eq}(\gamma)}\right] = \frac{3}{2}\,N_b\gamma^2.\]
Parameters:

nondimensional_end_to_end_length_per_link (numpy.ndarray) – The nondimensional end-to-end length per link \(\gamma\equiv \xi/N_b\ell_b\).

Returns:

The nondimensional relative Helmholtz free energy \(\beta\Delta\psi=N_b\Delta\vartheta\).

Return type:

numpy.ndarray

The nondimensional relative Helmholtz free energy per link as a function of the applied nondimensional end-to-end length per link,

\[\Delta\vartheta(\gamma) = \ln\left[\frac{\mathscr{P}_\mathrm{eq}(0)}{\mathscr{P}_\mathrm{eq}(\gamma)}\right]^{1/N_b} = \frac{3}{2}\,\gamma^2.\]
Parameters:

nondimensional_end_to_end_length_per_link (numpy.ndarray) – The nondimensional end-to-end length per link \(\gamma\equiv \xi/N_b\ell_b\).

Returns:

The nondimensional relative Helmholtz free energy per link \(\Delta\vartheta\equiv\beta\Delta\psi/N_b\).

Return type:

numpy.ndarray

equilibrium_distribution(end_to_end_length)

The nondimensional equilibrium probability density of nondimensional end-to-end vectors per link as a function of the nondimensional end-to-end length per link,

\[P_\mathrm{eq}(\xi) = \frac{e^{-\beta\psi(\xi, T)}}{4\pi\int e^{-\beta\psi(\xi', T)} \,{\xi'}{}^2 d\xi'} = \left(\frac{3}{2\pi N_b\ell_b^2}\right)^{3/2}\exp\left(-\frac{3\xi^2}{2N_b\ell_b^2}\right).\]
Parameters:

end_to_end_length (numpy.ndarray) – The end-to-end length \(\xi\).

Returns:

The equilibrium probability density \(P_\mathrm{eq}\).

Return type:

numpy.ndarray

nondimensional_equilibrium_distribution(nondimensional_end_to_end_length_per_link)

The nondimensional equilibrium probability density of nondimensional end-to-end vectors per link as a function of the nondimensional end-to-end length per link,

\[\mathscr{P}_\mathrm{eq}(\gamma) = \frac{e^{-\Delta\vartheta(\gamma)}}{4\pi\int e^{-\Delta\vartheta(\gamma')} \,{\gamma'}{}^2 d\gamma'} = \left(\frac{3}{2\pi N_b}\right)^{3/2}\exp\left(-\frac{3}{2}\,N_b\gamma^2\right).\]
Parameters:

nondimensional_end_to_end_length_per_link (numpy.ndarray) – The nondimensional end-to-end length per link \(\gamma\equiv \xi/N_b\ell_b\).

Returns:

The nondimensional equilibrium probability density \(\mathscr{P}_\mathrm{eq}\equiv (N_b\ell_b)^3 P_\mathrm{eq}\).

Return type:

numpy.ndarray

equilibrium_radial_distribution(end_to_end_length)

The equilibrium probability density of end-to-end lengths as a function of the end-to-end length,

\[g_\mathrm{eq}(\xi) = 4\pi\xi^2 P_\mathrm{eq}(\xi).\]
Parameters:

end_to_end_length (numpy.ndarray) – The end-to-end length \(\xi\).

Returns:

The equilibrium probability density \(g_\mathrm{eq}\).

Return type:

numpy.ndarray

nondimensional_equilibrium_radial_distribution(nondimensional_end_to_end_length_per_link)

The nondimensional equilibrium probability density of nondimensional end-to-end lengths per link as a function of the nondimensional end-to-end length per link,

\[\mathscr{g}_\mathrm{eq}(\gamma) = 4\pi\gamma^2 \mathscr{P}_\mathrm{eq}(\gamma).\]
Parameters:

nondimensional_end_to_end_length_per_link (numpy.ndarray) – The nondimensional end-to-end length per link \(\gamma\equiv \xi/N_b\ell_b\).

Returns:

The nondimensional equilibrium probability density \(\mathscr{g}_\mathrm{eq}\equiv N_b\ell_b g_\mathrm{eq}\).

Return type:

numpy.ndarray